Abstract

We study the effect of freeze-thaw cycling on the packing fraction of equal spheres immersed in water. The water located between the grains experiences a dilatation during freezing and a contraction during melting. After several cycles, the packing fraction converges to a particular value η(∞)=0.595 independently of its initial value η(0). This behavior is well reproduced by numerical simulations. Moreover, the numerical results allow one to analyze the packing structural configuration. With a Voronoï partition analysis, we show that the piles are fully random during the whole process and are characterized by two parameters: the average Voronoï volume μ(v) (related to the packing fraction η) and the standard deviation σ(v) of Voronoï volumes. The freeze-thaw driving modify the volume standard deviation σ(v) to converge to a particular disordered state with a packing fraction corresponding to the random loose packing fraction η(BRLP) obtained by Bernal during his pioneering experimental work. Therefore, freeze-thaw cycling is found to be a soft and spatially homogeneous driving method for disordered granular materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.