Abstract

Growth estimates of complex orthogonal polynomials with respect to the area measure supported by a disjoint union of planar Jordan domains (called, in short, an archipelago) are obtained by a combination of methods of potential theory and rational approximation theory. The study of the asymptotic behavior of the roots of these polynomials reveals a surprisingly rich geometry, which reflects three characteristics: the relative position of an island in the archipelago, the analytic continuation picture of the Schwarz function of every individual boundary and the singular points of the exterior Green function. By way of explicit example, fine asymptotics are obtained for the lemniscate archipelago | z m − 1 | < r m , 0 < r < 1 , which consists of m islands. The asymptotic analysis of the Christoffel functions associated to the same orthogonal polynomials leads to a very accurate reconstruction algorithm of the shape of the archipelago, knowing only finitely many of its power moments. This work naturally complements a 1969 study by H. Widom of Szegő orthogonal polynomials on an archipelago and the more recent asymptotic analysis of Bergman orthogonal polynomials unveiled by the last two authors and their collaborators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.