Abstract
We study the Bergman kernel of certain domains in $\mathbb{C}^n$, called elementary Reinhardt domains, generalizing the classical Hartogs triangle. For some elementary Reinhardt domains, we explicitly compute the kernel, which is a rational function of the coordinates. For some other such domains, we show that the kernel is not a rational function. For a general elementary Reinhardt domain, we obtain a representation of the kernel as an infinite series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.