Abstract

Bergenin is a C-glycoside of 4-O-methylgallic acid that is isolated from medicinal plants such as Flueggea leucopyrus, Bergenia crassifolia, Mallotus philippensis, Corylopsis spicata, Caesalpinia digyna, Mallotus japonicus, and Sacoglottis gabonensis. Even though there appears to be ample evidence from South Asian traditional medicine that bergenin possesses strong anticancer activity, no comprehensive scientific study has been carried out to test its anticancer potency. Therefore, in this study, the potential mechanisms of action for bergenin's postulated anticancer activity were examined using computational techniques. Firstly, bergenin was tested for its toxicity as a drug candidate using in silico toxicity analysis. It was found that bergenin is nontoxic according to modern toxicity measures. The optimized structure of bergenin was obtained at the DFT-B3LYP/6-31G(d) level of theory. Potential biological targets of bergenin were identified using reverse docking calculations. Reverse docking results suggested that galectin-3 is a potential target of bergenin. Gelectin-3 is an enzyme that plays a major role in cell-cell adhesion, cell-matrix interactions, macrophage activation, angiogenesis, metastasis, and apoptosis in cancer, making it a popular target in anticancer drug design. Among the many potential biological targets predicted by reverse docking calculations, galectin-3 was selected as it complies with the primary objective of this study. The binding of bergenin to galectin-3 was studied by conventional forward docking calculations. Classical molecular dynamics (MD) simulations were used to study the stability of the galectin-3:bergenin complex. Docking calculations indicated that bergenin has the potential to effectively bind to the carbohydrate recognition domain (CRD) of galectin-3. As well as electrostatic and van der Waals interactions, a few strong hydrogen bonds were found to be involved in the binding of bergenin to galectin-3. There is also a plausible π-stacking interaction between the aromatic moiety of bergenin and the His158 residue at the binding site. A 50-ns MD simulation was carried out for the bergenin:galectin-3 complex in a cubic water box with periodic boundary conditions. The MD results showed that the bergenin:galectin-3 complex is highly stable and confirmed the veracity of the docking results, which suggested that bergenin potentially exerts an inhibitory effect on galectin-3. This study therefore sheds new light on the anticancer activity of bergenin and demonstrates that bergenin could potentially be used to develop more potent galectin-3 inhibitors. The study also provides scientific evidence supporting the use of bergenin-containing plants in cancer treatments in Eastern traditional medicine. Graphical abstract Bergenin in the galectin-3 binding site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.