Abstract

BackgroundThe Bergenia species are perennial herbs native to central Asia, and one of the most promising medicinal plants of the family Saxifragaceae which are popularly known as ‘Pashanbheda’. The aim of this study was to evaluate antioxidant and α-amylase, α-glucosidase, lipase, tyrosinase, elastase, and cholinesterases inhibition potential of Bergenia pacumbis of Nepali origin collected from the Karnali region of Nepal.MethodsThe sequential crude extracts were made in hexane, ethyl acetate, methanol, and water. Antioxidant activities were analyzed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. The α-amylase, α-glucosidase, lipase, tyrosinase, elastase, acetylcholinesterase, and butyrylcholinesterase inhibition were analyzed by the 3,5-Dinitrosalicylic acid (DNSA), p-Nitrophenyl-α-D-glucopyranoside (p-NPG), 4-nitrophenyl butyrate (p-NPB), l-3,4-dihydroxyphenylalanine (L-DOPA), N-Succinyl-Ala-Ala-p-nitroanilide (AAAPVN), acetylthiocholine, and butyrylcholine as a respective substrate. The major metabolites were identified by high performance liquid chromatography with electron spray ionization- quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS) profiling.ResultsOur results revealed the great antioxidant ability of crude extract of B. pacumbis in ethyl acetate extract against both DPPH (IC50 = 30.14 ± 0.14 μg/mL) and ABTS (IC50 = 17.38 ± 1.12 μg/mL). However, the crude methanol extract of B. pacumbis showed the comparable enzymes inhibitions with standard drugs; α-amylase (IC50 = 14.03 ± 0.04 μg/mL), α-glucosidase (IC50 = 0.29 ± 0.00 μg/mL), lipase (IC50 = 67.26 ± 0.17 μg/mL), tyrosinase (IC50 = 58.25 ± 1.63 μg/mL), elastase (IC50 = 74.00 ± 3.03 μg/mL), acetylcholinesterase (IC50 = 31.52 ± 0.58 μg/mL), and butyrylcholinesterase (IC50 = 11.69 ± 0.14 μg/mL). On the basis of HPLC-ESI-QTOF-MS profiling of metabolites, we identified major compounds such as Bergenin, Catechin, Arbutin, Gallic acid, Protocatechuic acid, Syringic acid, Hyperoside, Afzelechin, Methyl gallate, Paashaanolactone, Astilbin, Quercetin, Kaempferol-7-O-glucoside, Diosmetin, Phloretin, and Morin in methanol extract which has reported beneficial bioactivities.ConclusionOur study provides a plethora of scientific evidence that the crude extracts of B. pacumbis from Nepalese origin in different extracting solvents have shown significant potential on inhibiting free radicals as well as enzymes involved in digestion, skin related problems, and neurological disorders compared with the commercially available drugs.

Highlights

  • The Bergenia species are perennial herbs native to central Asia, and one of the most promising medicinal plants of the family Saxifragaceae which are popularly known as ‘Pashanbheda’

  • A variety of secondary metabolites have been identified from different parts of Bergenia species [6, 7], the major bioactive phenolics compounds mainly concentrated in their roots; bergenin, arbutin, and gallic acid, are principal contributor of the therapeutic properties of Bergenia species [8,9,10] that leads to variation in their medicinal activities

  • We focused on the profiling of major metabolite constituents and reported the in-vitro enzymes inhibition activity of Bergenia pacumbis

Read more

Summary

Introduction

The Bergenia species are perennial herbs native to central Asia, and one of the most promising medicinal plants of the family Saxifragaceae which are popularly known as ‘Pashanbheda’. Because of anti-lithiatic and diuretic activities, different species of Bergenia are used to treat kidney and urinary bladder stones and root powder is used to cure diarrhea, dysentery, thirst, vomiting, and indigestion in traditional medicine practice in Nepal, India, and China [1, 2]. Numerous pharmacological activities such as antipyretic, antioxidant, antilithiatic, antiplasmodial, antitussive, antiulcer, antidiabetic, hepatoprotective, hemorrhoidal, analgesic, insecticidal, anti-inflammatory, antimicrobial, and diuretic properties have been reported in different species of Bergenia [3,4,5,6]. Suppressing the absorption of dietary lipids in the gastrointestinal tract is one of the best option to overcome the obesity problems which can be accomplished by inhibiting pancreatic lipase enzyme that is responsible for the digestion of fats consumed in the regular diets [22, 23]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call