Abstract
ABSTRACTLet M be an arbitrary complex manifold and let L be a Hermitian holomorphic line bundle over M. We introduce the Berezin–Toeplitz quantization of the open set of M where the curvature on L is nondegenerate. In particular, we quantize any manifold admitting a positive line bundle. The quantum spaces are the spectral spaces corresponding to [0,k−N], where N>1 is fixed, of the Kodaira Laplace operator acting on forms with values in tensor powers Lk. We establish the asymptotic expansion of associated Toeplitz operators and their composition in the semiclassical limit k→∞ and we define the corresponding star-product. If the Kodaira Laplace operator has a certain spectral gap this method yields quantization by means of harmonic forms. As applications, we obtain the Berezin–Toeplitz quantization for semi-positive and big line bundles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.