Abstract

Berberine has hypoglycemic and hypolipidemic effects on diabetic rats. This study investigated the relationship between hypoglycemic and hypolipidemic effects of berberine and peroxisome proliferator-activated receptors (PPARs) and positive transcription elongation factor b (P-TEFb) (including cyclin-dependent kinase 9 (CDK9) and cyclin T1) in white adipose tissue of diabetic rats and RNA interference-treated 3T3-L1 cells. Berberine promoted differentiation and inhibited lipid accumulation of 3T3-L1 cells, further decreased PPARα/δ/γ, CDK9 and cyclin T1 mRNA and protein expression and decreased tumor necrosis factor α content in supernatants of both control and RNA interference-treated 3T3-L1 cells. After a 16-week induction with 35 mg/kg streptozotocin (i.p.) and high-carbohydrate/high-fat diet, diabetic rats were treated with 75, 150 and 300 mg/kg berberine and 100 mg/kg fenofibrate or 4 mg/kg rosiglitazone for another 16 weeks. Berberine decreased white adipose tissue to body weight ratio and adipocyte size and increased adipocyte number. Berberine upregulated PPARα/δ/γ, CDK9 and cyclin T1 mRNA and protein expression in adipose tissue, decreased tumor necrosis factor α and free fatty acid content and increased lipoprotein lipase activity in serum and adipose tissue. Berberine modulated metabolic related PPARs expression and differentiation related P-TEFb expression in adipocytes, which are associated with its hypoglycemic and hypolipidemic effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call