Abstract

Endothelial injury, characterized by an inflammatory response and increased permeability, is an initial stage of atherosclerosis (AS). Adenosine 5′-monophosphate (AMP), activated protein kinase (AMPK), and Nuclear Factor kappa B (NF-κB)/Yin Yang 1(YY1) signaling pathways play important roles in the process of endothelial injury. Berberine (BBR), a bioactive alkaloid isolated from several herbal substances, possesses multiple pharmacological effects, including anti-inflammatory, antimicrobial, antidiabetic, anticancer, and antioxidant activities. Previous studies showed a protective effect of berberine against endothelial injury. However, the underlying mechanism remains unclear. We explored the potential effect of BBR on TNF- (tumor necrosis factor-) α-induced injury of human umbilical endothelial cells (HUVECs) and studied its possible molecular mechanism. In the present study, HUVECs were divided into three groups. HUVEC viability was measured with Cell Counting Kit-8 assay. Extracellular lactic dehydrogenase (LDH) concentration was measured with LDH leakage assay. Endothelial microparticle (EMP) numbers were evaluated by flow cytometry analysis assay. The expression of proinflammatory cytokines was evaluated by Enzyme-Linked Immunosorbent Assay (ELISA). The mRNA expression of NF-κB and YY1 was detected by Real-Time PCR (RT-PCR). The protein expression of NF-κB, YY1, and AMPK was detected by immunofluorescence microscopy assay or western blot analysis. The results showed that LDH concentration, EMPs numbers, and the expression of proinflammatory cytokines (IL-6, IL-8, and IL-1β) increased in TNF-α-induced injured HUVECs, but ameliorated by BBR pretreatment. BBR pretreatment upregulated the expression of phosphorylated AMPK and downregulated the expressions of NF-κB and YY1 in injured HUVECs induced by TNF-α, which were offset by the AMPK inhibitor Compound C (CC). The results indicated that BBR protected against TNF-α-induced endothelial injury via the AMPK/NF-κB/YY1 signaling pathway.

Highlights

  • Atherosclerosis, a progressive inflammatory disease of largeand medium-sized arteries, is the main pathological changes of cardiovascular diseases [1]

  • Extracellular lactic dehydrogenase (LDH) concentration and Evidence-Based Complementary and Alternative Medicine endothelial microparticle (EMP) numbers are the main indices of endothelial permeability [6, 7]. e expression of inflammatory cytokines, including interleukin 6 (IL-6), IL-8, and IL-1β, promotes the adhesion and infiltration of monocytes into the vascular endothelium and further leads to endothelial injury [8,9,10]

  • HUVECs within 4–7 passages were used and divided into three groups: (1) control group: HUVECs were cultured in the endothelial cell medium (ECM) medium without serum for 24 h and in the ECM medium with serum for 24 hours; (2) TNF-α group: HUVECs were cultured with no serum for 24 hours and in the ECM medium with serum and TNF-α 20 ng/mL for 24 hours; and (3) TNF-α+BBR (20 μM) group: beside the 2 groups, HUVECs were pretreated with 20 μM BBR for 2 hours

Read more

Summary

Introduction

Atherosclerosis, a progressive inflammatory disease of largeand medium-sized arteries, is the main pathological changes of cardiovascular diseases [1]. Endothelial cell dysfunction, manifested in lesion-prone areas of the arterial vasculature, results in the earliest detectable changes in the life history of an atherosclerotic lesion the focal permeation, trapping, and physicochemical modification of circulating lipoprotein particles in the subendothelial space [2]. Endothelial injury, characterized by an inflammatory response and increased permeability, is an initial stage of atherosclerosis (AS). E expression of inflammatory cytokines, including interleukin 6 (IL-6), IL-8, and IL-1β, promotes the adhesion and infiltration of monocytes into the vascular endothelium and further leads to endothelial injury [8,9,10]. The inflammatory response causes dissociation of cell-cell junctions between endothelial cells as well as cytoskeleton contraction, resulting in endothelial permeability [11]. e hyperpermeability of the endothelium, in turn, contributes to the vascular inflammatory response by activating inflammatory cytokines [12,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.