Abstract

BackgroundBerberine (BBR), a compound extracted from a variety of medicinal herbs, has been shown multiple pharmacological effects against cancer cells of different origins. Cisplatin (DDP) is known as an effective chemotherapeutic agent against cancer by inducing DNA damage and cell apoptosis. However, the effect of the combined used of BBR and DDP on cell necroptosis in ovarian cancer has not been reported.MethodsOVCAR3 and three patient-derived primary ovarian cancer cell lines (POCCLs) were chosen as the experimental objects. To determine the potential anti-cancer activity of BBR and DDP in combination, we firstly treated OVCAR3 and POCCLs cells with BBR and/or DDP. The cell viability of OVCAR3 and POCCLs with treatment of BBR or DDP for different hours was measured by CCK-8 assay. Flow cytometry was used to analyze cell cycle distribution and changes in apoptotic cells after treatment with BBR and/or DDP. The morphological changes of OVCAR3 cells were observed by using Transmission electron microscopy (TEM) analysis. Proliferation, apoptosis and necroptosis related markers of OVCAR3 and POCCLs with treatment of BBR or DDP were measured by RT-qPCR, western blotting and immunofluorescence assay.ResultsOur results demonstrated that BBR significantly inhibited the proliferation of OVCAR3 and primary ovarian cancer cells in a dose- and time-dependent manner. The combination treatment of BBR and DDP had a prominent inhibitory effect on cancer cell growth and induced G0/G1 cell cycle arrest. TEM revealed that the majority of cells after BBR or DDP treatment had an increasing tendency of typical apoptotic and necrotic cell death morphology. Besides, BBR and DDP inhibited the expression of PCNA and Ki67 and enhanced the expression and activation of Caspase-3, Caspase-8, RIPK3 and MLKL.ConclusionThis study proposed that the combination therapy of BBR and DDP markedly enhanced more ovarian cancer cell death by inducing apoptosis and necroptosis, which may improve the anticancer effect of chemotherapy drugs. The apoptosis involved the caspase-dependent pathway, while the necroptosis involved the activation of the RIPK3–MLKL pathway. We hope our findings might provide a new insight for the potential of BBR as a therapeutic agent in the treatment of ovarian cancer.

Highlights

  • Berberine (BBR), a compound extracted from a variety of medicinal herbs, has been shown multiple pharmacological effects against cancer cells of different origins

  • The results obtained show that BBR significantly inhibited cell viability in OVCAR3 (Fig. 1a) and primary ovarian cancer cell lines (POCCLs) (Fig. 1b) in a doseand time-dependent manner compared to corresponding blank control group (NC), with the greatest effect at 72 h at a concentration of 500 μmol/L BBR in both cases

  • Our results showed that BBR or DDP significantly increased the number of both OVCAR3 cells (Fig. 3a) and POCCLs (Fig. 3b) in G0/G1 phase as compared with control group, and this effect was even enhanced in co-treatment groups of BBR and DDP as compared with the groups of single treatment

Read more

Summary

Introduction

Berberine (BBR), a compound extracted from a variety of medicinal herbs, has been shown multiple pharmacological effects against cancer cells of different origins. Cisplatin (DDP) is known as an effective chemotherapeutic agent against cancer by inducing DNA damage and cell apoptosis. The effect of the combined used of BBR and DDP on cell necroptosis in ovarian cancer has not been reported. The therapeutic mechanism of these DNA-damaging agents, DDP, seems to be associated with their efficacy in inhibiting the proliferation and apoptosis of cancer cells [3,4,5]. Serious side effects after administration of DDP was found in patients, including bone marrow suppression, nephrotoxicity, neurotoxicity and gastrointestinal reactions. To tackle this problem, researchers pinned their hope on combination therapy. Several researches have been done in striving to find drugs find drugs that enhance the anticancer effect of DDP without increasing side effects, but failed

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call