Abstract
ObjectiveInsulin resistance plays an important role in the pathogenesis of diabetic cardiomyopathy. Berberine (BBR) is a plant alkaloid which promotes hypoglycemia via increasing insulin sensitivity in peripheral tissues. Little is known of BBR’s role in regulating glucose metabolism in heart. Materials/methodsWe examined the effect and mechanism of BBR on glucose consumption and glucose uptake in insulin sensitive or insulin resistant rat H9c2 cardiomyocyte cells. H9c2 myoblast cells were differentiated into cardiomyocytes and incubated with insulin for 24h to induce insulin resistance. ResultsBBR-treatment of H9c2 cells increased glucose consumption and glucose uptake compared to controls. In addition, BBR-treatment attenuated the reduction in glucose consumption and glucose uptake in insulin resistant H9c2 cells. Compound C, an inhibitor of AMP-activated protein kinase (AMPK), abolished the enhancement of glucose consumption and glucose uptake mediated by BBR in both insulin sensitive and insulin resistant H9c2 cells compared to controls. ConclusionBBR significantly increased AMPK activity, but had little effect on the activity of protein kinase B (AKT) in insulin resistant H9c2 cells, suggesting that berberine improves insulin resistance in H9c2 cardiomyocytes at least in part via stimulation of AMPK activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.