Abstract

AimsCognitive decline is one of the most challenging issues for cancer survivors undergoing doxorubicin (DOX) based chemotherapy. Oxidative stress and inflammation primarily through tumor necrosis factor-alpha (TNF-α) are considered the key contributors to DOX-induced chemobrain. Berberine (BBR) has attracted much interest because of its anti-oxidative, anti-inflammatory and anti-apoptotic actions. This study aimed to evaluate the potential neuroprotective effect of BBR in DOX-induced neurodegeneration and cognitive deficits. Materials and methodsChemobrain was induced by DOX i.p. injection at the dose of 2 mg/kg, once/week, for four consecutive weeks. Rats were treated with BBR (100 mg/kg, p.o.) for 5 days/week for four consecutive weeks. Key findingsBBR significantly attenuated behavioral defects in DOX-induced cognitive impairment. Besides, BBR reversed histopathological abnormalities. Mechanistically, it reversed DOX-induced neuroinflammation by attenuating NF-κB gene and protein expression in addition to diminishing expression of pro-inflammatory mediators (TNF-α and IL-1β), as well as apoptotic related factors (Bax, Bcl2 and Bax/Bcl2 ratio). Additionally, BBR activated the anti-oxidative defense via upregulating the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and manganese superoxide dismutase (MnSOD). BBR improved synaptic plasticity through cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF). These effects were related through the modulation of Sirtuin1 (SIRT1) expression. SignificanceBBR is highlighted to induce neuroprotection against DOX-induced cognitive decline through modulating brain growth factors and imposing an anti-inflammatory, anti-apoptotic and anti-oxidative effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call