Abstract

Berberine facilitates the production of glucagon-like peptide-1 (GLP-1) by intestinal L cells. Here, we aimed to reveal the mechanism of berberine facilitating the production of GLP-1 by intestinal L cells. In this study, we confirmed that the 100 mg/kg berberine daily through diet decreased the miR-106b expression and elevated the expressions of β-catenin and T-cell factor 4 (TCF4) in colon tissues of high-fat diet mice; berberine decreased the concentrations of triglycerides, total cholesterol and the ratio of low-density lipoprotein cholesterol and high-density lipoprotein cholesterol in mouse serum samples; berberine decreased the blood glucose in the mouse tail vein blood and promoted GLP-1 production by intestinal L cells in mouse serum samples and elevated the GLP-1 expression in mouse colon tissues. Meanwhile, the mechanism analysis demonstrated that a dose of 100 μM berberine down-regulated the miR-106b expression by elevating the methylation levels of miR-106b in STC-1 cells and miR-106b bound to TCF4 in 293T cells. Moreover, the 100 mg/kg berberine daily through diet activated the β-catenin/TCF4 signaling pathway by decreasing miR-106b, thereby facilitating GLP-1 production in intestinal L cells through the in vivo assays. Conclusively, our experimental data illustrated that berberine decreased miR-106b expression by increasing its methylation levels and then activated the β-catenin/TCF4 signaling pathway, thereby facilitating GLP-1 production by intestinal L cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.