Abstract

The performance of a free space optical (FSO) communication system is significantly affected by various atmospheric turbulence conditions and pointing errors (PEs) apart from the additive noise, which is assumed to be Gaussian. Optical pre-amplifiers are an essential component of FSO systems for improving the receiver sensitivity. However, optical pre-amplification results in amplified spontaneous emission (ASE), which dominates the receiver thermal and shot noises. The square law photodetection process at the receiver in a FSO system necessitates the consideration of chi-square statistics for the decision variable contrary to the Gaussian approximation that is widely used in the literature. In this paper, we evaluate the bit error rate (BER) performance of a FSO system assuming non-return-to-zero on–off keying modulation in the presence of ASE noise under weak, moderate to strong, and very strong atmospheric turbulence regimes and PEs. We also derive asymptotic BER expressions for the considered FSO system for large values of the signal-to-noise ratio in terms of simple elementary functions. Further insight into the system is provided by performing a diversity analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.