Abstract

Morphisms and weak morphisms extend the concept of strong maps and maps of combinatorial geometry to the class of finite dimensional semimodular lattices. Each lattice which is the image of a semimodular lattice under a morphism is semimodular. In particular, each finite lattice is semimodular if and only if it is the image of a finite distributive lattice under a morphism. Regular and non-singular weak morphisms may be used to characterize modular and distributive lattices. Each morphism gives rise to a geometric closure operator which in turn determines a quotient of a semimodular lattice. A special quotient, the Higgs lift, is constructed and used to show that each morphism decomposes into elementary morphisms, and that each morphism may be factored into an injection and a contraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call