Abstract
A comprehensive theoretical investigation on the bit-error ratio (BER) performance of multi-channel photonic interconnects operating in pulsed regimes is presented. Specifically, the optical link contains either a silicon photonic crystal (SiPhC) or a SiPhC-graphene (SiPhC-GRA) waveguide, possessing slow-light (SL) and fast-light (FL) regimes. A series of Gaussian pulses plus complex white noise are placed at input of each channel, with output signals demultiplexed and analyzed by a direct-detection receiver. Moreover, a rigorous theoretical model is proposed to measure signal propagation in SiPhC and SiPhC-GRA, which incorporates all crucial linear and nonlinear optical effects, as well as influences of free-carriers and SL effects. BER results of multi-channel systems are evaluated by utilizing the Fourier series Karhunen-Loeve expansion method. Our findings reveal that good BER performance is acquired at SiPhCs and SiPhC-GRAs in SL regimes but with their footprint about 2.5-fold smaller than FL waveguides. Moreover, the enhanced nonlinearity in SiPhC-GRAs induced by strong graphene-SiPhC coupling causes extra signal degradation than SiPhCs at the same length. This work provides additional insights into the coupling effect between SiPhCs operating in SL regimes and graphene, and their influence on WDM signal transmission, highlighting the potential applications of SiPhC-GRA interconnects in next-generation super-computing systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.