Abstract
Although free space optical (FSO) communication is a promising technique for deep space communication and it can help in the rapid development of space exploration missions, it encounters coronal turbulence during superior solar conjunction. To improve the bit error rate (BER) performance of FSO communication system under the influence of coronal turbulence, a hybrid modulation scheme, L-PPM-MSK-SIM-which is a combination of pulse position modulation (PPM), minimum shift keying (MSK), and sub-carrier intensity modulation (SIM) techniques-is proposed in this study. Considering various noise sources, both the BER and channel capacity of the communication system are evaluated under the lognormal (LN) turbulence channel. Our simulation results demonstrate that the BER performance with the L-PPM-MSK-SIM scheme is superior to that with L-PPM and BPSK-SIM schemes. In addition, the parameters of the coronal turbulence and FSO communication system have a tremendous influence on the link BER and channel capacity. Moreover, our results also revel that thermal noise is more predominant than the short noise and background noise for the BER performance of deep space FSO communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.