Abstract

This study proposes novel three-dimensional (3D) matrices of wavelength/time/spatial code for code-division multiple-access (OCDMA) networks, with a double balanced detection mechanism. We construct 3D carrier-hopping prime/modified prime (CHP/MP) codes by extending a two-dimensional (2D) CHP code integrated with a one-dimensional (1D) MP code. The corresponding coder/decoder pairs were based on fiber Bragg gratings (FBGs) and tunable optical delay lines integrated with splitters/combiners. System performance was enhanced by the low cross correlation properties of the 3D code designed to avoid the beat noise phenomenon. The CHP/MP code cardinality increased significantly compared to the CHP code under the same bit error rate (BER). The results indicate that the 3D code method can enhance system performance because both the beating terms and multiple-access interference (MAI) were reduced by the double balanced detection mechanism. Additionally, the optical component can also be relaxed for high transmission scenery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.