Abstract

Application of 50 microM bepridil (BPD) to cultured nerve cells did not greatly affect the resting cytoplasmic Ca2+ concentration ([Ca2+]i) but caused its pronounced increase both during prolonged glutamate (GLU, 100 microM) treatment and, especially, in the postglutamate period in case of partial [Ca2+]i recovery. In contrast, in cells exhibiting a high [Ca2+]i plateau in the postglutamate period, BPD application either did not cause any additional elevation of [Ca2+]i or caused a very small increase. Under identical conditions replacement of external Na+ by Li+ or N-methyl-D-glucamine (NMDG) either did not change [Ca2+]i or produced a very small increase, strongly indicating that the BPD-evoked Ca2+ responses could not be explained solely by Na+/Ca2+ exchange inhibition but resulted from some other BPD effects. Indeed, in experiments with Rhodamine 123-loaded neurons it has been shown that 50 microM BPD induced prominent mitochondrial depolarization which is known to abolish the mitochondrial Ca2+ uptake. Finally it was revealed that BPD application to the cell culture either in the period of a prolonged (15 min) GLU action or, especially, in the postglutamate period greatly exacerbated delayed neuronal death, apparently due to a complex inhibitory action of the drug on both Ca2+ buffering and Ca2+ extrusion systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call