Abstract

In this work, an engineered submicrometer-scale bilayer stacking in via-type one-time programmable (OTP) memory and self-rectified resistive switching memory [resistive random access memory (ReRAM)] is demonstrated. The current development has achieved that co-existing memory functionality (OTP and ReRAM) with mitigating scaling requirement (fuse voltage trending with via size scaling), low fabrication complexity [via-fuse vs. gate-dielectric anti-fuse (AF)], and match with the current metal fuse technology ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$&gt;$ </tex-math></inline-formula> 2 V). In addition, an electrode engineered has been proposed to realize low programming voltage ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\sim $ </tex-math></inline-formula> 1.9 V) in via-fuse OTP featuring by metal–insulator–metal advanced back-end-of-line (BEOL) process with ruthenium materials. The impact of via-size, programming window, stacked structures, and integration capability has been extensively studied. Our results provide a pathfinding of high density, integration capability, low programming voltage, multifunctionality between programmable read-only memory (PROM), and resistive switching memory co-existing in future embedded applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.