Abstract

Micron- and submicron-scale 3D structure realization nowadays is possible due to the two-photon photopolymerization (TPP) direct laser writing photolithography (DLW photolithography) method. However, the achievement of lithographic features with dimensions less than 100 nm is in demand for the fabrication of micro-optical elements with high curvature values, including X-ray microlenses. Spectroscopic and photochemical study of a photoinitiator (PI) based on a methyl methacrylate derivative of 2,5-bis(4-(dimethylamino)benzylidene) cyclopentanone was performed. Enhanced intersystem crossing in the methyl methacrylate derivative results in increased radical generation for the subsequent initiation of polymerization. A comprehensive study of the new photocompositions was performed, with particular emphasis on photochemical constants, the degree of photopolymerization, and topology. The optimal parameters for the fabrication of mechanically stable structures were determined in this research. The threshold dose parameters for lithography (radiation power of 5 mW at a speed of 180 µm/s) when trying to reach saturation values with a conversion degree of (35 ± 1) % were defined, as well as parameters for sub-100 nm feature fabrication. Moreover, the 45 nm feature size for elements was reached. Fabrication of X-ray lens microstructures was also demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.