Abstract

An aliphatic polycarbonate containing pendant benzyl chloride groups was synthesized by organocatalytic ring-opening polymerization (ROP) of a cyclic carbonate monomer (MTC–OCH2BnCl). Facile postpolymerization modification of the resultant polymer with various nucleophiles facilitated access to a functionally diverse variety of polycarbonate materials in high yield, including those that contained diethanolamine, phosphonium, and azide groups. The azide-functionalized polycarbonates could be further elaborated via Cu-catalyzed click chemistry with alkynyl-functionalized poly(ethylene glycol) (PEG) or pyrene to form the corresponding PEG- or pyrene-grafted polymers. Finally, an amphiphilic block copolymer containing grafted pyrene units in the hydrophobic block was synthesized using the aforementioned postpolymerization click functionalization strategy. We show by transmission electron microscopy (TEM) and light scattering that the block copolymer self-assembles into micelles of ∼48 nm diameter in aqueous media and that the critical micelle concentration (CMC) of the nanoparticles was lower than that exhibited by similarly sized micelles formed from a control block copolymer containing no pyrene (CMC values of 6.3 and 8.1 mg L–1, respectively).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.