Abstract

We tested the hypothesis that the inhibition of chitin synthesis by benzoylphenyl ureas could be explained by their effect on the uptake of GlcNAc into chitin. Our test system consisted of organ cultures of wing imaginal discs from Plodia interpunctella. These wing discs synthesize chitin in response to 20-hydroxyecdysone or RH 5849, a non-steroidal ecdysteroid mimic. Two benzoylphenyl ureas, diflubenzuron and teflubenzuron, inhibited ecdysteroid-dependent chitin synthesis in the wing discs. However, although chitin synthesis was inhibited, there was no corresponding diminution of amino sugar uptake by the imaginal discs. In another experiment 20-hydroxyecdysone stimulated uptake of two sugars, 2-deoxy-D-glucose and 3-O-methyl-D-glucose, which are not synthesized into chitin. Transport of these non-metabolized sugars was unaffected by the inhibitors. In an additional test of the effects on precursor transport, the action of ecdysone (alpha-ecdysone) was examined. Ecdysone stimulated amino sugar uptake, but not chitin synthesis. Neither diflubenzuron nor teflubenzuron inhibited ecdysone-dependent precursor transport. Finally, we examined ecdysteroid-induced uptake of amino sugars by an imaginal disc derived cell line IAL-PID2. In this case, also, GlcNAc transport was not inhibited significantly by either diflubenzuron or teflubenzuron. From these observations we conclude that inhibition of uptake of amino sugars does not account for the ability of teflubenzuron and diflubenzuron to inhibit chitin synthesis in P. interpunctella wing discs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call