Abstract

The design of lightweight neutrons shields has been restricted for quite some time to the use of the epoxy thermosets as the main building blocks. Meanwhile, the recent developments in the field of polymers suggest otherwise. Indeed, benzoxazine resins have taken the lead over the traditional thermosets in many exigent applications. Therefore, in a vision to introduce newer matrices with better performances and to further expand the applications of the benzoxazine resins into the nuclear field, the neutron shielding efficiency along with the thermal and thermomechanical performances of the neat benzoxazine polymer and its subsequent B4C-reinforced composites were investigated. The neutron shielding measurements were performed using an optimized experimental setup at NUR research reactor, Algiers. The neat benzoxazine polymer displayed almost similar thermal neutrons screening performances than the epoxy with a macroscopic cross-section (Σ) of a 0.724 cm−1 equivalent to a mean free path (λ) of 0.957 cm. The effect of the particle amount was also studied to maximize the shielding ability of the developed materials. For instance, the benzoxazine composite containing 20 wt.% of B4C displayed the outstanding screening ratio of about 96% for a sample thickness of 13 mm. Finally, the remarkable findings were put into context by providing multifaceted comparisons with the available shielding materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call