Abstract

The denitrogenative rearrangements of several types of benzotriazoles were investigated by DFT (B3LYP/6-311G(d,p)) and CASPT2(10,10)sp/6-311G(d,p) calculations. The Graebe-Ullmann synthesis of carbazoles 18 by pyrolysis or photolysis of 1-arylbenzotriazoles 14 proceeds without the involvement of benzazirines and without Wolff-type ring contraction to fulvenimines. However, 1-aryltetrahydrobenzotriazoles undergo both cyclization to tetrahydrocarbazole and ring contraction. Triazoloquinones like 34 undergo predominant ring contraction to aminofulvenediones like 38 and also ring expansion to azepinediones like 40 and cyclization to N-arylbenzaziridinediones 39, whereas carbazolediones are not formed. Denitrogenation of 1-methylbenzotriazole 64 results in a facile 1,2-H shift with formation of N-phenylmethanimine 67. 1-Cyanobenzotriazole 71 undergoes destructive pyrolysis with charring, and the calculations predict the occurrence of several low-activation energy reaction pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.