Abstract
Benzophenone derivatives, such as polyprenylated benzoylphloroglucinols and xanthones, are biologically active secondary metabolites. The formation of their C13 skeleton is catalyzed by benzophenone synthase (BPS; EC 2.3.1.151) that has been cloned from cell cultures of Hypericum androsaemum. BPS is a novel member of the superfamily of plant polyketide synthases (PKSs), also termed type III PKSs, with 53-63% amino acid sequence identity. Heterologously expressed BPS was a homodimer with a subunit molecular mass of 42.8 kDa. Its preferred starter substrate was benzoyl-CoA that was stepwise condensed with three malonyl-CoAs to give 2,4,6-trihydroxybenzophenone. BPS did not accept activated cinnamic acids as starter molecules. In contrast, recombinant chalcone synthase (CHS; EC 2.3.1.74) from the same cell cultures preferentially used 4-coumaroyl-CoA and also converted CoA esters of benzoic acids. The enzyme shared 60.1% amino acid sequence identity with BPS. In a phylogenetic tree, the two PKSs occurred in different clusters. One cluster was formed by CHSs including the one from H. androsaemum. BPS grouped together with the PKSs that functionally differ from CHS. Site-directed mutagenesis of amino acids shaping the initiation/elongation cavity of CHS yielded a triple mutant (L263M/F265Y/S338G) that preferred benzoyl-CoA over 4-coumaroyl-CoA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.