Abstract
Interactions between microbes and micropollutants (MPs) play a crucial role in water purification or treatment. Current studies have generally focused on the direct degradation or cometabolism of MPs. Considering the increasing interest in and importance of the roles of MPs in microbial metabolism, we adopted an Mn(II)-oxidizing Pseudomonas sp. QJX-1 using tyrosine (Tyr) as the sole carbon and nitrogen source to investigate the effects of seven MPs on its growth and function. Six MPs exhibited an inhibition effect on bacterial growth and Mn(II) oxidation. Only benzophenone-4 (BP-4) promoted the growth of QJX-1 and biogenic oxidation Mn(II), but its concentration was not directly coupled to growth, which was unexpected. RNA-seq data suggested that the addition of BP-4 did not significantly change the basic metabolic function of QJX-1, but stimulated the upregulation of the pyruvate and gluconeogenesis metabolic pathways of Tyr for QJX-1 growth. Furthermore, protein identification and extracellular superoxide detection indicated that Mn(II) oxidation was largely driven by the formation of superoxide in response to Tyr starvation; the acceleration of superoxide production, due to BP-4 accelerating Tyr consumption, was responsible for the promotion effect of BP-4 on QJX-1 Mn(II) oxidation. Our findings highlight the dual effects that MPs can have on the growth and function of a single strain in aquatic ecosystem, i.e., the coexistence of inhibition and promotion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.