Abstract

Effects of benzoic acid (BA) on physicochemical properties and ecotoxicities of CuO nanoparticles (CuONPs) in model aqueous media were studied. The CuONPs had larger hydrodynamic sizes and higher surface zeta potentials during 96h of settling in the presence of BA than when the BA were not present. BA interaction with CuONPs is shown to promote dissolved Cu release from CuONPs in a dose-dependent manner. The contribution of free Cu(2+)-ions to growth inhibition toxicity of the CuONP suspensions at a toxicologically relevant concentration for the green alga Scenedesmus obliquus was around 22%, indicating that dissolved fraction was not the major source of toxicity of CuONPs. The toxicity of CuONPs increased as the BA concentration increased. BA significantly altered total antioxidant capacity of CuONPs-exposed algal cells. The mechanism of the BA effect on the CuONPs toxicity may be mainly associated with degree of agglomeration, dissolved Cu, and particle-induced oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call