Abstract
Amyloids are protein fibrils of nanometer size resulting from protein self-assembly. They have been shown to be associated with a wide variety of diseases such as Alzheimer's and Parkinson's and may contribute to various other pathological conditions, known as amyloidoses. Insulin is prone to form amyloid fibrils under slightly destabilizing conditions in vitro and may form amyloid structures when subcutaneously injected into patients with diabetes. There is a great deal of interest in developing novel small molecule inhibitors of amyloidogenic processes, as potential therapeutic compounds. In this study, the effects of five new synthetic benzofuranone derivatives were investigated on the insulin amyloid formation process. Protein fibrillation was analyzed by thioflavin-T fluorescence, Congo red binding, circular dichroism, and electron microscopy. Despite high structural similarity, one of the five tested compounds was observed to enhance amyloid fibrillation, while the others inhibited the process when used at micromolar concentrations, which could make them interesting potential lead compounds for the design of therapeutic antiamyloidogenic compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.