Abstract

This study's primary objective is to give a thorough examination of the comparative charge transport and optoelectronic characteristics of all conceivable isomers of benzodithiophene (BDT) and benzodiselenophene (BDSe). Density Functional Theory (DFT) simulations have been performed on all the possible isomers of benzodithiophene (BDT) and benzodiselenophene (BDSe) and results are compared with corresponding experimental known isomers. The absorption energies and HOMO–LUMO energy levels were predicted by Time-Dependent Density Functional Theory (TD–DFT). Electron and hole Reorganization Energies (RE), Hole Extraction Potential (HEP) and Electron Extraction Potential (EEP), Ionization Potentials (IP) and Electron Affinities (EA) of all the isomers are reported. The UV–visible absorption of BDT and BDSe isomers are between 250–417 nm and 290–445 nm respectively. Comparatively, the simulated hole and electron reorganization energy of all the BDT and BDSe isomers have low values and hence expected applications in the field of Organic Optoelectronic Devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call