Abstract

Selenastrum capricornutum efficiently degrades high molecular weight polycyclic aromatic hydrocarbons (HMW PAHs). Until now, there are few studies on the benzo(k)fluoranthene (BkF) and benzo(b)fluoranthene (BbF) biodegradation by this microalga. For this reason, in the present work, extracts obtained from cultures of S. capricornutum were incubated with BkF and BbF individually, and analyzed by HPLC with fluorescence and different mass spectrometry detection modes: i) the HPLC-ESI(+)-MS/MS (MRM mode) analysis that confirmed the formation of monohydroxylated and dihydrodiol metabolites indicating that these PAHs could be simultaneously degraded through the monooxygenase and dioxygenase; ii) HPLC-ESI(+)-MS (full scan mode) that showed the formation of key metabolites containing four and two aromatic rings possibly resulting from aromatic ring-opening oxygenases, not known until now in microalgae; iii) HPLC-FD analysis that confirmed the individual BkF and BbF degradation occurring in extra- and intra-cellular extracts, indicating that an oxygenase enzyme complex is released by microalgae cells to the external environment to perform HMW PAHs biodegradation. So, this work presents new insights into the metabolic pathways of BkF and BbF biodegradation by S. capricornutum; likewise, the intra- and extra-cellular extracts of this microalgae have great potential to be applied in environmental procedures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call