Abstract

Currently, there is a significant unmet need for novel analgesics with fewer side effects. In this study, we carried out structural modification of a hit compound previously identified in an artificial-intelligence (AI) virtual screening and discovered the potent analgesic, benzo[b]thiophene-2-carboxamide analog (compound 25) with new structural scaffold. We investigated the signaling pathways of opioid receptors mediated by compound 25, and found this racemic compound activated mu-opioid receptor through the cyclic adenosine monophosphate (cAMP) and β-arrestin-2-mediated pathways with strong potency and efficacy, and accompanying nociceptin-orphanin FQ opioid peptide and delta-opioid receptors through the cAMP pathway with weak potencies. Compound 25 elicited potent antinociception in thermal-stimulated pain (ED50 value of 127.1 ± 34.65 μg/kg) and inflammatory-induced allodynia models with less gastrointestinal transit inhibition and antinociceptive tolerance than morphine. Overall, this study revealed a novel analgesic with reduced risks of side effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.