Abstract
This study aims to explore the male reproductive toxicity of Benzo[b]fluoranthene (BbF) and related mechanisms. The results of computational toxicology analysis indicated male reproductive toxicity of BbF was related to apoptosis of Leydig cells and that Akt/p53 pathway might play a key role. In experiments, BbF induced testosterone decline, decreased concentration and motility of sperm and aggravated testicular pathological injury in mice. Besides, BbF led to apoptosis in Leydig cells, and decreased expressions of p-Akt and Bcl2, while improving the expressions of p53, Bax and Cleaved Caspase-3 in vivo and in vitro. Further, compared with BbF group, Akt activator SC79 significantly reduced cell apoptosis rate, improved cell viability, promoted the expressions of p-Akt and p-Mdm2, and reversed the above molecular expressions. Similarly, p53 inhibitor Pifithrin-α also significantly enhanced the cell vitality, alleviated the apoptosis of TM3 cells induced by BbF, and decreased the expressions of Bax and Cleaved Caspase-3, with the up-regulation of Bcl2. To sum up, by inhibiting Akt-Mdm2 signaling, BbF activated the p53-mediated mitochondrial apoptosis pathway, further inducing the apoptosis of Leydig cells, therefore resulting in testosterone decline and male reproductive damage. Besides, this study provided a valid mode integrating computational toxicology and experimental approaches in toxicity testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.