Abstract

Steroidogenesis of gonadal cells is tightly regulated by gonadotropins. However, certain polycyclic aromatic hydrocarbons, including Benzo[a]pyrene (BaP), induce reproductive toxicity. Several existing studies have considered higher than environmentally relevant concentrations of BaP on male and female steroidogenesis following long-term exposure. Also, the impact of short-term exposure to BaP on gonadotropin-stimulated cells is understudied. Therefore, we evaluated the effect of 1 nM and 1 µM BaP on luteinizing hormone/choriogonadotropin (LH/hCG)-mediated signalling in two steroidogenic cell models, i.e. the mouse tumor Leydig cell line mLTC1, and the human primary granulosa lutein cells (hGLC) post 8- and 24-h exposure. Cell signalling studies were performed by homogeneous time-resolved fluorescence (HTRF) assay, bioluminescence energy transfer (BRET) and Western blotting, while immunostainings and immunoassays were used for intracellular protein expression and steroidogenesis analyses, respectively. BaP decreased cAMP production in gonadotropin-stimulated mLTC1 interfering with Gαs activation. Therefore, decrease in gonadotropin-mediated CREB phosphorylation in mLTC1 treated with 1 μM BaP was observed, while StAR protein levels in gonadotropin-stimulated mLTC1 cells were unaffected by BaP. Further, BaP decreased LH- and hCG-mediated progesterone production in mLTC1. Contrastingly, BaP failed to mediate any change in cAMP, genes and proteins of steroidogenic machinery and steroidogenesis of gonadotropin-treated hGLC. Our results indicate that short-term exposure to BaP significantly impairs steroidogenic signalling in mLTC1 interfering with Gαs. These findings could have a significant impact on our understanding of the mechanism of reproductive toxicity by endocrine disruptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.