Abstract

Using benzo(a)pyrene (BP) as a model carcinogen we are currently applying a fluorescence technique to detect the very low levels of carcinogen-DNA adducts in human populations due to environmental exposure. In synchronous fluorescence spectrophotometry for detection of BP-diol epoxide-DNA, excitation and emission wavelengths are scanned simultaneously with a fixed wavelength difference (delta lambda) of 34 nm. Compared to conventional fluorescence methods only one peak emerges because excitation and emission peaks have to match delta lambda to show. Because of the quenching effect of DNA, samples are hydrolyzed by acid. After this, BP-diol epoxide (BPDE)- -modified DNA gives a peak at the same wavelength and of the same fluorescence yield as BP-tetrols. When DNA from peripheral blood lymphocytes of 44 coke oven workers were analyzed, 10 had a sharp peak at 379. Among 36 coke oven workers from another factory, 4 had detectable levels of adducts. A much smaller percentage of samples was positive in a group of aluminum plant workers. We have also found BPDE-DNA adducts in DNA from pulmonary alveolar macrophages and peripheral blood lymphocytes from tobacco smokers and some of the nonsmokers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.