Abstract

Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon found in tobacco smoke and air pollution products. BaP exposure has been recently suggested to be a risk factor for hypertension in coke oven workers. The mechanisms of BaP on vascular smooth muscle function remain unclear. Here, we examined the influence and possible mechanism of BaP on vasoconstriction in rat thoracic aortas ex vivo and in vivo. In vivo exposure of rats to BaP (20 mg/kg) for 8 weeks caused a significant enhancement in the systolic blood pressure and enhanced aortic hyperreactivity to α1-adrenoceptor selective agonist phenylephrine in aortas. BaP (1 and 10 μM) treatment for 18 h induced an enhancement of phenylephrine-induced vasoconstriction in the organ cultures of aortas. Aryl hydrocarbon receptor antagonist α-naphthoflavone, protein kinase C (PKC) inhibitor chelerythrine, mitogen-activated protein kinases (MAPK) inhibitor PD98059, myosin light chain kinase (MLCK) inhibitor ML-9, and Rho-kinase inhibitor Y-27632 significantly suppressed BaP-enhanced vasoconstriction. BaP time-dependently triggered reactive oxygen species (ROS) production in primary vascular smooth muscle cells. Both antioxidant N-acetylcysteine and NAD(P)H oxidase inhibitor diphenyleneiodonium significantly inhibited BaP-triggered ROS production and vasoconstriction. These results suggest that BaP enhances aortic vasoconstriction via the activation of ROS and muscular signaling molecules PKC, MAPK, MLCK, and Rho-kinase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call