Abstract

Herein, we present a comparative study on the chemistry and biological activity of N-heterocyclic carbene (NHC)Pt(II)/Au(I) complexes. Accordingly, representative compounds of the cis/trans- [PtL2X2] (X = Cl (5, 6) or I (7, 8)), [PtL3Cl]+ (9), [AuLX] (X = Cl (10) or I (11)), and [AuL2]+ (12) type, where L is 1,3-diethylbenzimidazol-2-ylidene, were synthesized and characterized in detail to elucidate the role of the metal center on their physicochemical and biological properties. The stability of the complexes in the presence of cell culture medium and their reactivity toward relevant biomolecules were investigated by RP-HPLC. In addition, their effects on plasmid DNA and in vitro cytotoxicity in ovarian cancer cells and non-malignant fibroblasts were evaluated. Cationic [AuL2]+ and [PtL3X]+ species displayed the highest cytotoxicity and stability in cell culture medium in the series. They exhibited IC50 values lower than the established metallodrugs cisplatin and auranofin in both wild-type and cisplatin-resistant ovarian cancer cells, being able to circumvent cisplatin resistance. Finally, Pt(II)–NHC complexes form 5′-guanosine monophosphate adducts under physiologically relevant conditions and interact with plasmid DNA in contrast to their Au(I) analogs, corroborating their distinct modes of action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.