Abstract
A low temperature hydrogen borrowing approach to generate secondary amines using benzimidazole-based N-heterocyclic carbene (BNHC) ruthenium complexes is reported. A series of the piano-stool complexes of the type [(η6-p-cymene)(BNHC)RuCl2] (1a-g) were synthesized via one-pot reaction of the NHC salt precursor, Ag2O, and [RuCl2(p-cymene)]2 and characterized using conventional spectroscopic techniques. The geometry of two precursors, [(η6-p-cymene)(Me4BnMe2BNHCCH2OxMe)RuCl2] (1f) and [(η6-p-cymene)(Me5BnMe2BNHCCH2OxMe)RuCl2] (1g), was studied by single crystal X-ray diffraction. These catalysts were found to dehydrogenate alcohols efficiently at temperatures as low as 50 °C to allow Schiff-base condensation and subsequent imine hydrogenation to afford secondary amines. Notably, this ruthenium-based procedure enables the N-alkylation of aromatic and heteroaromatic primary amines with a wide range of primary alcohols in excellent yields of up to 98%. The present methodology is green and water is liberated as the sole byproduct.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.