Abstract

Prolonged benzidine exposure is a known cause of urothelial carcinoma (UC). Benzidine-induced epithelial-to-mesenchymal transition (EMT) is critically involved in cell malignant transformation. The role of ERK1/2 in regulating benzidine-triggered EMT has not been investigated. This study was to investigate the regulatory role of ERK1/2 in benzidine-induced EMT. By using wound healing and transwell chamber migration assays, we found that benzidine could increase SV-HUC-1 cells invasion activity, western blotting and Immunofluorescence showed that the expression levels of Snail, β-catenin, Vimentin, and MMP-2 were significantly increased, while, the expression levels of E-cadherin, ZO-1 were decreased. To further demonstrate the mechanism in this process, we found that the phosphorylation of ERK1/2, p38, JNK and AP-1 proteins were significantly enhanced compared to the control group (*P < 0.05). Afterward, treated with MAPK pathways inhibitors, only ERK inhibitor(U0126)could reduce the expression of EMT markers in SV-HUC-1 cells, but not p38 and JNK inhibitor(SB203580, SP600125), which indicated that benzidine induces the epithelial–mesenchymal transition in human uroepithelial cells through ERK1/2 pathway. Taken together, findings from this study could provide into the molecular mechanisms by which benzidine exerts its bladder-cancer-promoting effect as well as its target intervention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call