Abstract
The cleaning solution for the post-chemical mechanical planarization (post-CMP) process of tungsten in neutral-alkaline media requires corrosion inhibitors as an additive, especially for advanced devices where the device node size shrinks below 10 nm. In the present study, the corrosion inhibition performance of benzethonium chloride (BTC) is evaluated in neutral-alkaline conditions. The electrochemical impedance spectroscopy (EIS) analysis showed ∼ 90 % of corrosion inhibition efficiency with an optimum concentration of 0.01 wt% BTC at both pH 7 and 11. Langmuir adsorption isotherm, frontier molecular orbital theory, molecular simulation, contact angle, precipitation study, and X-ray photoelectron spectroscopy analysis were performed to identify the inhibition mechanism of the BTC molecule on the W surface. Based on the proposed mechanism, the electrostatic attraction between the positively charged N atom in the BTC molecule and the negatively charged W surface initiates the adsorption of the molecule. The high dipole moment and large molecular size enhance the physical adsorption of the molecule to the surface. In addition to this, the adsorption isotherm analysis shows that possible chemical interaction with a moderate value of Gibbs free energy change of adsorption exists between the W and BTC molecule. The excellent corrosion inhibition efficiency of BTC on W is confirmed by the frontier molecular orbital theory and molecular dynamic simulation analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.