Abstract

Twenty novel 1,2,3-triazole benzenesulfonamides featuring nitrile 8a-g, carbothioamide 9a-f, and N'-hydroxycarboximidamide 10a-g functionalities were designed and synthesized to improve potency and selectivity as carbonic anhydrase inhibitors (CAIs). The synthesized 1,2,3-triazole compounds were tested in vitro as CAIs against four physiologically and pharmacologically relevant isoforms of human carbonic anhydrase (hCA I, II, IV, and IX). Compounds 8a-g, 9a-f, and 10a-g displayed variable inhibition constants ranging from 8.1 nM to 3.22 μM for hCA I, 4.7 nM to 0.50 μM for hCA II, 15.0 nM to 3.7 μM for hCA IV, and 29.6 nM to 0.27 μM for hCA IX. As per the inhibition data profile, compounds 9a-e exhibited strong efficacy for hCA IV, whereas the inhibition was found to be somewhat diminished in the case of hCA IX by nearly all the compounds. A computational protocol based on docking and MM-GBSA was conducted to reveal the plausible interactions of the targeted sulfonamides within the hCA II and IX binding sites. The outcomes of appending various functionalities at the C-4 position of the 1,2,3-triazole motif over the inhibition potential and selectivity of the designed sulfonamides were examined with a potential for the discovery of new isoform selective CAIs. The CAI and SAR data established the significance of the synthesized 1,2,3-triazoles as building blocks for developing CAI drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call