Abstract

Benzene-1,3,5-tricarboxylic acid-functionalized MCM-41 (MCM-41-Pr-BTA), as a novel hybrid organosilica, was prepared and properly characterized by the Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller, thermal gravimetric analysis and energy-dispersive X-ray spectroscopy to evaluate the functional groups, crystallinity, surface area, morphology, particle size distribution and loading of functional groups. Interestingly, the 1,3-propylene linker used in this study incorporates appropriate catalytic activity into the MCM-41 framework compared to the more known trialkoxypropyl silanes. This new organosilica can be used as a hybrid nanocatalyst for the expeditious and efficient synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives, as an important pharmaceutical scaffold, in aqueous media via a three-component one-pot condensation of isatoic anhydride and aromatic aldehydes with primary amines or ammonium salts. This method has several advantages such as low catalyst loading, high to excellent yields, short reaction times, working under green conditions and simple workup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.