Abstract

In this Letter we analyze the forces involved in the formation of the benzene excimer and its electron structure, and (anti)aromatic character. We extend our study to excited states in molecular aggregates, the triplet excimer and the benzene-tricyanobenzene exciplex. Electronic wave functions are decomposed in terms of localized excitations and ion-pair configurations through diabatization, and we show that excimer (anti)aromaticity can be described as the linear combination of ground, excited, and ionic molecular states. Our analysis concludes that the benzene excimer must be characterized as antiaromatic, with weaker antiaromaticity than the molecular excited singlet. Moreover, we define a model electronic Hamiltonian for the excimer state and we use it as a building block for the extrapolation of electronic Hamiltonians in molecular aggregates. Benzene multimers present a nonuniform (anti)aromatic character, with the center of the column being antiaromatic and the edges behaving as aromatic. The implications of this work go beyond the study of the excimer, providing a general framework for the calculation and characterization of excited states in aggregates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.