Abstract

High-level OVOS (optimized virtual orbital space) CCSD(T) interaction energy calculations (up to the aug-cc-pVQZ basis set) and various extrapolations toward the complete basis set (CBS) limit are presented for the most important structures on the benzene dimer potential energy surface. The geometries of these structures were obtained via an all-coordinate gradient geometry optimization using the DFT-D/BLYP method, covering the empirical dispersion correction fitted exclusively for this system. The fit was carried out against two estimated CCSD(T)/CBS potential energy curves corresponding to the distance variation between two benzene rings for the parallel-displaced (PD) and T-shaped (T) structures. The effect of the connected quadruple excitations on the interaction energy was estimated using the CCSD(TQf) method in a 6-31G*(0.25) basis set, destabilizing the T and T-shaped tilted (TT) structures by ≈0.02 kcal/mol and the PD structure by ≈0.04 kcal/mol. Our best CCSD(T)/CBS results show, within the error bars of the applied methodology, that the energetically lowest-lying structure is the TT structure, which is nearly 0.1 kcal/mol more stable than the almost isoenergetic PD and T structures. The specifically parametrized DFT-D/BLYP method leads to a correct energy ordering of the structures, with the errors being smaller by 0.2 kcal/mol with respect to the most accurate CCSD(T) values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call