Abstract

Surface functionalization of mesoporous silica nanoparticles is important for their applications but fairly challenging using benzene-bridged organosilane as the precursor through the postsynthesis approach. Herein, we report an acid-catalysis approach for the postmodification of benzene-bridged organosilica onto the surface of large-pore mesoporous silica nanoparticles. By using HCl (∼1 M) as the acid catalyst in a tetrahydrofuran solvent, the self-assembly of the bridged organosilica precursor is avoided, while surface modification of mesoporous silica nanoparticles is promoted with controllable organic contents and retained large pore sizes. This strategy can also be applied to the postmodification of organosilica with end benzene groups. The strategy developed in this study is expected to be applied for the postmodification of other organosilica precursors with various functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.