Abstract

Dry eye disease (DED) is an emerging health issue affecting people worldwide. There have been rapid advances in the development of novel molecules and targeted therapies for the treatment of DED in the recent past. For testing and optimizing these therapies, it is necessary to have reliable experimental animal models of DED. One such approach is the use of benzalkonium chloride (BAC). Several BAC-induced DED models of rabbits and mice have been described in literature. BAC induces high levels of proinflammatory cytokines in the cornea and conjunctiva, along with epithelial cell apoptosis and reduction of mucins, which leads to tear film instability, thereby successfully simulating human DED. The stability of these models directs whether the treatment is to be applied while BAC is being instilled or after its cessation. In this review, we summarize the previously described BAC animal models of DED and present original data on rabbit DED models created using 0.1%, 0.15%, and 0.2% BAC administration twice daily for two consecutive weeks. The 0.2% BAC model sustained DED signs for 3 weeks, while 0.1% and 0.15% models sustained DED signs for 1-2 weeks after BAC discontinuation. Overall, these models look promising and continue to be used in various studies to investigate the efficacy of therapeutic drugs for DED treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.