Abstract

This study aimed to examine the effect of adding KOH, Na2CO3, and Carboxymethyl Cellulose additives on the physical properties of the mud, as well as the optimal additive for sludge production. The preparation of the basal sludge involved the addition of 22.5 grams of bentonite, 350 millilitres of distilled water, and 10 grams of Barite as a constant variable. Then it stated 0.5 variations of the Na2CO3 additive; 1.5; 3 grams, KOH 0.5; 1.5; and 3 grams, and Carboxymethyl Cellulose 3; 6; and 9 grams. A physical property measurement involving density was conducted. Samples were evaluated for Plastic Viscosity and Yield Point at 300 and 600 rpm dial speeds. After 30 minutes of filter press compression, the filtration loss, mud cake, and pH were measured. The results indicate that the KOH additive decreases Yield Point by 8.6 lb/100ft2 and increases Filtrate Loss by 5.8 mL and sediment pH by 11.12 points. The additive Na2CO3 then causes a reduction in Filtrate Loss of 10.4, 8.8, 7.6 mL and an increase in Plastic Viscosity. While Carboxymethyl Cellulose can increase Plastic Viscosity by 7; 13; 55 cP, Gel strength by 4; 6; 40 Lb/100 ft2, and Filtrate Loss by 10; 8; 7.6mL. Carboxymethyl Cellulose is the additive that has the most significant effect on the physical properties of the mud because it can affect Plastic Viscosity, Gel Strength, Yield Point, and Filtrate Loss so that the soil can approach API 13A Standards. The optimal amount of Carboxymethyl Cellulose should be added at a mass of 6 grams, or 13 cP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.