Abstract
Benthos of southern Green Bay, Lake Michigan have not been comprehensively examined since 1978. Since then, invasive species appeared, urbanization intensified, and restoration efforts were implemented, which likely altered the benthic macroinvertebrate community. Further, current benthos are subjected to dynamic factors including eutrophication, sedimentation, and periodic hypoxia. Understanding community responses to these anthropogenic stressors and natural habitat gradients is imperative to preserving biological integrity within Green Bay. Therefore, the objectives of this project were to describe the current macroinvertebrate community, examine changes since 1978, and assess the roles of productivity, substrate type, water depth, and hypoxia in structuring macroinvertebrate communities. Benthos were sampled at 197 stations, including 97 also sampled in 1978 by Markert (1982) and 100 that were added to increase spatial resolution. We collected 93 macroinvertebrate taxa in southern Green Bay with the community dominated by Chironomus and immature tubificid worms. Nonmetric multidimensional scaling (NMDS) ordination distinguished present and historical communities. Although oligochaete worms and chironomids remained dominant over time, Chironomus abundance increased and characterized the present community, whereas benthos were historically more diverse. The magnitude of temporal change varied spatially among zones of Green Bay, with larger differences concentrated in the Middle Bay and the Inner Bay remaining comparable to 1978. Present-day assemblages were most associated with the trophic gradient driven by Green Bay’s southernmost tributary, the Fox River, but also differed with substrate type and had similar structures in areas subjected to frequent hypoxia. Routine monitoring should continue to track changes while accounting for spatial effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.