Abstract

Benthic foraminifera have been widely used as proxy for paleo-methane emissions, mainly based on their stable isotopic signature. In cold seeps, the ecology of these organisms remains uncertain, in particular their ability to thrive during active phases of seepage. In this study, we evaluate the benthic foraminiferal response to methane seepage in Arctic sediments. We do so by examining living and dead benthic foraminiferal assemblages (>63 µm) of eleven push cores collected in two of the most active pockmarks (Lunde and Lomvi) along Vestnesa Ridge, offshore western Svalbard. Benthic foraminiferal assemblages are interpreted in the context of sediment geochemistry, seafloor images, and pore water analyses, which are used to characterize the different microhabitats. At the sampling locations, methane is currently being released making these the ideal sites to investigate the connection between the benthic foraminiferal distribution and methane seepage in the Arctic Ocean. Our results show that benthic calcareous foraminifera live in methane charged sediments, even if the faunal density and diversity is low. We note that the eutrophic-tolerant species Melonis barleeanus withstand the methane-induced hostile geochemical conditions and that it seems to prosper on the additional food availability represented by microbial mats growing at methane seeps. We also observe that the methane transport mechanisms affect different species differently. For example, sediments characterized by advective-like conditions are distinguished by a high density of living individuals, dominated by Cassidulina neoteretis, whereas sediments characterized by methane diffusion exhibit a very low faunal density. Agglutinated foraminifera are less abundant in sediments influenced by methane seepage, suggesting that this group of foraminifera does not tolerate the geochemical conditions at seeps. A comparison between the size fractions >63 and >125 µm highlights the importance of studying the finer size fraction for ecological studies in the Arctic Ocean. In the light of our results, we conclude that benthic foraminiferal can thrive at active methane seeps, where assemblages are clearly affected by methane flux.

Highlights

  • The Arctic Ocean is a fundamental component of the climate system because of its role in the global carbon dioxide (CO2) and methane (CH4) cycles (e.g., McGuire et al, 2009)

  • This study provided crucial information regarding the interpretation of benthic foraminiferal assemblages in Arctic methane seeps

  • Our data confirmed that common arctic species (e.g., C. neoteretis, C. reniforme, M. barleeanus) are able to live in environments currently releasing methane, like the Lunde and Lomvi pockmarks at Vestnesa Ridge

Read more

Summary

Introduction

The Arctic Ocean is a fundamental component of the climate system because of its role in the global carbon dioxide (CO2) and methane (CH4) cycles (e.g., McGuire et al, 2009). Recent modeling simulations showed that Western Svalbard cold-seep system has been actively releasing methane for the last 6 Ma, charging the seafloor with migrating hydrocarbons over the last 2 Ma (Knies et al, 2018). In this area, the Vestnesa Ridge hosts a gas hydrate system with associate gas seepages (Vogt et al, 1994; Hustoft et al, 2009; Petersen et al, 2010; Bünz et al, 2012; Panieri et al, 2017). Previous investigation at Vestnesa Ridge revealed that the methane been released from small depressing termed pits within two active pockmarks called Lunde and Lomvi (Bünz et al, 2012) is a mixture of microbial and thermogenic methane (Panieri et al, 2017)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call