Abstract

AbstractHyporheic zone reaction rates are highest just below the sediment‐water interface, in a shallow region called the benthic biolayer. Vertical variability of hyporheic reaction rates leads to unexpected reaction kinetics for stream‐borne solutes, compared to classical model predictions. We show that deeper, low‐reactivity locations within the hyporheic zone retain solutes for extended periods, which delays reactions and causes solutes to persist at higher concentrations in the stream reach than would be predicted by classical approaches. These behaviors are captured by an upscaled model that reveals the fundamental physical and chemical processes in the hyporheic zone. We show how time scales of transport and reaction within the biolayer control solute retention and transformation at the stream scale, and we demonstrate that accurate assessment of stream‐scale reactivity requires methods that integrate over all travel times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.