Abstract

Bent functions, or equivalently, Hadamard difference sets in the elementary Abelian group ( ${\mathrm {GF}}(2^{2m}), $ +), have been employed to construct symmetric and quasi-symmetric designs having the symmetric difference property. The main objective of this paper is to use bent vectorial functions for a construction of a two-parameter family of binary linear codes that do not satisfy the conditions of the Assmus–Mattson theorem, but nevertheless hold 2-designs. A new coding-theoretic characterization of bent vectorial functions is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.